Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.529
Filtrar
1.
Planta ; 259(4): 89, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467941

RESUMO

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Assuntos
Milhetes , Sorghum , Humanos , Taiwan , Microscopia Eletrônica de Varredura , Sorghum/metabolismo , Ceras/metabolismo , Folhas de Planta/metabolismo , Epiderme Vegetal/metabolismo
2.
Microsc Res Tech ; 87(6): 1173-1182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288976

RESUMO

This study presents a comprehensive scanning electron microscopy (SEM) analysis of Opuntioideae cactus stems indigenous to the arid regions of Saudi Arabia, elucidating their intricate microstructural features. The findings not only advance taxonomic understanding by aiding in species differentiation but also reveal the antimicrobial potential of these cacti, highlighting their significance as valuable natural resources for both ecological and pharmaceutical applications. The present study is aimed to present the stem epidermal anatomical description of Opuntioideae (Cactaceae) belonging to genus Opuntia (five Species), Cylindropuntia (two Species), and Austrocylindropuntia (one Species) as tool for systematic identification. Stem epidermal anatomical features represent here are epidermal cells, stomatal complex, subsidiary cells, and trichomes findings was observed using light microscope and SEM. The stem epidermal sections were made by heating in test tube containing lactic acid and nitric acid protocol. In anatomical findings, irregular, zigzag, wavy, and polygonal epidermal cells with sinuate, sinuous, and straight anticlinal walls were observed. Quantitatively minimum length (28.05 ± 2.05 µm) and width (23.15 ± 3.41 µm) of epidermal cells were noted in Cylindropuntia kleiniae. Paracytic type of stomata present was observed in all species with kidney-shaped guard cell present in six species, and in Opuntia macrocentra and Austrocylindropuntia subulata, dumbbell-shaped guard cells were observed. The largest length of stomata (53.25 ± 2.05 µm) and width of stomata (35.10 ± 5.19 µm) were observed in Opuntia monacantha. In present research work, stem anatomical features show many diverse characters are of special attention for plant taxonomist for the correct identification and provide baseline for further study in subfamily Opuntiodeae. RESEARCH HIGHLIGHTS: The intricate microstructures of Opuntioideae cactus stems. Investigating the antimicrobial potential of compounds found within Opuntioideae cactus stems. Correlations between the unique structural features observed through SEM and the antimicrobial activity of Opuntioideae cactus stem extracts.


Assuntos
Anti-Infecciosos , Cactaceae , Epiderme Vegetal , Folhas de Planta , Microscopia Eletrônica de Varredura , Estômatos de Plantas
3.
Proc Natl Acad Sci U S A ; 121(2): e2316396121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165937

RESUMO

Plant epidermal cell walls maintain the mechanical integrity of plants and restrict organ growth. Mechanical analyses can give insights into wall structure and are inputs for mechanobiology models of plant growth. To better understand the intrinsic mechanics of epidermal cell walls and how they may accommodate large deformations during growth, we analyzed a geometrically simple material, onion epidermal strips consisting of only the outer (periclinal) cell wall, ~7 µm thick. With uniaxial stretching by >40%, the wall showed complex three-phase stress-strain responses while cyclic stretching revealed reversible and irreversible deformations and elastic hysteresis. Stretching at varying strain rates and temperatures indicated the wall behaved more like a network of flexible cellulose fibers capable of sliding than a viscoelastic composite with pectin viscosity. We developed an analytic framework to quantify nonlinear wall mechanics in terms of stiffness, deformation, and energy dissipation, finding that the wall stretches by combined elastic and plastic deformation without compromising its stiffness. We also analyzed mechanical changes in slightly dehydrated walls. Their extension became stiffer and more irreversible, highlighting the influence of water on cellulose stiffness and sliding. This study offers insights into the structure and deformation modes of primary cell walls and presents a framework that is also applicable to tissues and whole organs.


Assuntos
Parede Celular , Celulose , Celulose/química , Parede Celular/química , Membrana Celular , Pectinas , Epiderme Vegetal
4.
Microsc Res Tech ; 87(2): 387-394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855458

RESUMO

The anatomical traits of plant species are essential for taxonomic analyses and evolutionary evaluations. Clarifying the anatomical characteristics of the foliar epidermis in three distinct Lilium species L. pumilum Delile, L. brownii F.E.Br. ex Miellez and L. davidii Duch. ex Elwes were studied in this article. The objective is to assess the taxonomic relevance of these characteristics and their potential as indicators of species divergence within the genus Lilium. Plant samples were gathered in Gansu, China, from numerous populations of each species that represented a range of climatic and ecological factors. A microscopic analysis employing thin slices and peel mounts was done to assess the stomatal density and dimensions. Significant interpopulation differences in stomatal features were found in the results, offering potential opportunities for taxonomic discrimination. The species differ in qualitative and quantitative characters to differentiate the three species. The links between the observed anatomical characteristics and species classification within the Lilium genus were clarified for the three studied species. In the end, this research advances knowledge of Lilium taxonomy, aids in conservation efforts, and deepens awareness of the general patterns of plant variety. RESEARCH HIGHLIGHTS: Epidermal Traits Aid Taxonomy: Cell shape, arrangement, and structures aid Lilium Identification. Cuticle Reveals Taxonomic Clues: Thickness, composition, and structure inform classification. Micromorphology for Species ID: Cell shape, wax, and striations differentiate Lilium species.


Assuntos
Lilium , Epiderme Vegetal , Epiderme Vegetal/ultraestrutura , Epiderme , Células Epidérmicas , Fenótipo
5.
Microsc Res Tech ; 87(3): 434-445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909218

RESUMO

The genus Ajuga is widely distributed in temperate to subtropical regions, and four species are currently recognized in Korea (A. decumbens, A. multiflora, A. nipponensis, and A. spectabilis), but epidermal anatomical differences across these species have never been described. A comparative study of the leaf micromorphological characteristics of Korean Ajuga species was performed using light microscopy (LM) and scanning electron microscopy (SEM) to elucidate their taxonomic usefulness and to assess leaf micromorphological diversity. Considerable diversity in epidermal and stomatal anatomy was observed across Korean Ajuga species. Species had both hypostomatic or amphistomatic leaves, with anomocytic, anisocytic, diactyic, or actinocytic stomatal complexes. Guard cell length across species ranged from 17.66 ± 0.57 µm to 32.50 ± 2.38 µm and correlated with genome size. Abnormal stomata were frequently observed in three species (A. decumbens, A. multiflora, and A. nipponensis) but not in A. spectabilis. Three types of glandular trichomes were found: peltate in all species, short-stalked in all species, and long-stalked glandular trichomes in A. multiflora. Among the investigated leaf micromophological characters, trichome type, epidermal cell shape, and stomatal morphology were all taxonomically informative traits at a species level. RESEARCH HIGHLIGHTS: A comprehensive micromorphological description of the leaf surface is provided for Korean Ajuga species using scanning electron microscopic (SEM) and light microscopic (LM) analyses. The diverse range of stomatal development and the occurrence of polymorphic stomatal types are documented for the first time in Korean Ajuga species. The great diversity in stomatal and trichome morphology in Korean Ajuga species are taxonomically useful traits for species identification.


Assuntos
Ajuga , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura , Células Epidérmicas , Epiderme , República da Coreia
6.
Microsc Res Tech ; 87(3): 534-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950576

RESUMO

Aconitum napellus L. is a popular medicinal plant extensively used in homeopathy. This article provides detailed morphology and microscopy, including the anatomical and histochemical features of the herb, to aid authentication and quality control. In cross-section, the root in secondary growth shows the phloem surrounded by pericyclic fibers and a well-developed xylem. The stem is irregular in outline, displaying unicellular trichomes and many free collateral vascular bundles encircling the pith. The leaf is dorsiventral, hypostomatic with anomocytic and anisocytic stomata, and shows non-glandular trichomes. The floral parts are characterized by uniseriate epidermises, homogeneous mesophyll, anomocytic stomata on the abaxial surface, trichomes, and oval pollen grains. The tissue fragments in powdered herbs show these characteristics and have numerous starch grains with thimble-shaped, linear or star-shaped hilum. The detailed macroscopic and microscopic analysis provided in this study can help in the authentication and quality control of A. napellus raw materials. RESEARCH HIGHLIGHTS: Key anatomical, micromorphological, and microchemical features of Aconitum napellus are described. The results of the study can support the taxonomy of the genus Aconitum. Morphological standardization of the species reported here is helpful in the quality control of this herb.


Assuntos
Aconitum , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Folhas de Planta/anatomia & histologia , Epiderme Vegetal/ultraestrutura , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura
7.
Microsc Res Tech ; 87(5): 869-875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115224

RESUMO

Understanding the anatomical traits of the foliar epidermis is essential for making precise species identification and categorization. In this study, scanning electron microscopy (SEM) was used to examine the taxonomically significant foliar epidermal traits of Hydrangea luteovenosa and H. serrata. The qualitative and quantitative traits observed included the epidermal cell form, cuticle presence, trichome morphology, stomatal type, and guard cell features. H. serrata had a thin and smooth cuticle, and epidermal cells organized compactly into cubic or hexagonal shapes. The stomata were of the anomocytic type and dispersed, while the trichomes were straightforward, unbranched, and distributed sparsely. The guard cells had distinct cell walls and a kidney-shaped morphology. These crucial traits for taxonomy were in line with an epidermis composed of three to five layers. Similar polygonal epidermal cells with a compact arrangement were observed in H. luteovenosa, together with a thin and smooth cuticle. The stomata were anomocytic and dispersed, while the trichomes were straightforward, unbranched, and sparsely distributed. The guard cells have distinct cell walls and a kidney-shaped morphology. The traits were indicative of an epidermal structure with three to five layers. These traits helped correctly identify and categorize these two species of Hydrangea. In addition to assisting in the taxonomic classification of these species and advancing knowledge of their ecological and evolutionary links, the SEM study provided insightful information into the structural variety of these species. RESEARCH HIGHLIGHTS: Microscopic characteristics of H. luteovenosa and H. serrata Understanding the anatomical traits of the foliar epidermis is essential for precise species identification and categorization.


Assuntos
Hydrangea , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura
8.
Proc Natl Acad Sci U S A ; 120(49): e2307012120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019866

RESUMO

The cuticle is a hydrophobic structure that seals plant aerial surfaces from the surrounding environment. To better understand how cuticular wax composition changes over development, we conducted an untargeted screen of leaf surface lipids from black cottonwood (Populus trichocarpa). We observed major shifts to the lipid profile across development, from a phenolic and terpene-dominated profile in young leaves to an aliphatic wax-dominated profile in mature leaves. Contrary to the general pattern, levels of aliphatic cis-9-alkenes decreased in older leaves following their accumulation. A thorough examination revealed that the decrease in cis-9-alkenes was accompanied by a concomitant increase in aldehydes, one of them being the volatile compound nonanal. By applying exogenous alkenes to P. trichocarpa leaves, we show that unsaturated waxes in the cuticle undergo spontaneous oxidative cleavage to generate aldehydes and that this process occurs similarly in other alkene-accumulating systems such as balsam poplar (Populus balsamifera) leaves and corn (Zea mays) silk. Moreover, we show that the production of cuticular wax-derived compounds can be extended to other wax components. In bread wheat (Triticum aestivum), 9-hydroxy-14,16-hentriacontanedione likely decomposes to generate 2-heptadecanone and 7-octyloxepan-2-one (a caprolactone). These findings highlight an unusual route to the production of plant volatiles that are structurally encoded within cuticular wax precursors. These processes could play a role in modulating ecological interactions and open the possibility for engineering bioactive volatile compounds into plant waxes.


Assuntos
Aldeídos , Populus , Ceras/química , Folhas de Planta/química , Triticum/química , Alcenos , Zea mays , Epiderme Vegetal
9.
Plant J ; 116(2): 389-403, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403589

RESUMO

Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.


Assuntos
Gossypium , Tricomas , Gossypium/genética , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epiderme Vegetal/metabolismo , Regulação da Expressão Gênica de Plantas/genética
10.
Microsc Microanal ; 29(4): 1531-1555, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488823

RESUMO

This study examines the role of light microscopic (LM) and scanning electron microscopic (SEM) micromorphological traits of the epidermis in identifying and classifying invasive plants. SEM was conducted to increase our understanding of microscopic qualities that are not visible in light microscopy and to elucidate unclear affinities among invasive species. The study examines invasive species' morphological and anatomical characteristics from the Pothohar Plateau of Pakistan for the first time. The results showed that various micromorphological features are very useful for species' accurate identification. Adaxial and abaxial surfaces of leaves showed variations in subsidiary cells, glands, anticlinal wall patterns, stomata, and epidermal cells. Epidermal cell shapes observed were irregular, elongated, rectangular, and polygonal. Epidermal cells having maximum length were calculated in Stellaria media (126.3 µm) on adaxial side. On the abaxial surface, the minimum length was noticed in Eucalyptus camaldulensis (28.5 µm). Both glandular and nonglandular trichomes were examined, ranging from unicellular to multicellular. Most of the investigated specimens of leaves were amphistomatic, while some were hypostomatic, like Alternanthera pungens, Calotropis procera, Cannabis sativa, Lantana camara, and Thevetia peruviana. Leaf epidermal morphology contains numerous useful systematic features for accurate identifications of plant species. The micromorphological attributes under observation provide a standard criterion to the researcher for identifications of invasive flora in future morpho-taxonomic studies.


Assuntos
Epiderme Vegetal , Tricomas , Tricomas/ultraestrutura , Epiderme Vegetal/anatomia & histologia , Estômatos de Plantas/ultraestrutura , Espécies Introduzidas , Folhas de Planta , Microscopia Eletrônica de Varredura , Células Epidérmicas/ultraestrutura , Epiderme
11.
Microsc Res Tech ; 86(11): 1484-1495, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477095

RESUMO

The knowledge of essential oil antimicrobial activity of Lamiaceous species is assessed to describe its effects. The comprehensive foliar trichomes and stomatal morphology of the leaves of essential oil-bearing plants from the family Lamiaceae revealed diverse antimicrobial properties. The aim of this study was to investigate the foliar anatomical traits of 19 Lamiaceous taxa belonging to different tribes using light and scanning electron microscopy to correctly diagnose the species. The microanatomy of the foliar epidermis, trichomes diversity, and the stomatal apertural complex was visualized. Quantitative measurements were noted to describe the variations and the qualitative aspects for example, polygonal shape epidermal cells were examined. The stomatal aperture of four types and trichomes appendages both non-glandular and glandular was identified. Significant variation was found in both quantitative and qualitative traits, including unique ornamentation on the trichomes. The taxonomic key was constructed for accurate identification using qualitative morpho-structural traits. The outcomes of this research explored taxonomically to accurately identify the Lamiaceous species using anatomical characters. This study will provide provides the ecological adaptation linked to evolutionary traits of leaf surfaces that evolve with time to adapt the harsh environmental conditions. RESEARCH HIGHLIGHTS: Investigated foliar anatomical traits of 19 Lamiaceous species The anatomy and antimicrobial activity of essential oil yielding Lamiaceae species. SEM revealed diverse aspects including peculiar sculptured trichomes Microscopic identification of different stomatal complex.


Assuntos
Lamiaceae , Óleos Voláteis , Estômatos de Plantas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura , Epiderme , Lamiaceae/anatomia & histologia , Óleos Voláteis/farmacologia
12.
Science ; 381(6653): 54-59, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410832

RESUMO

Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.


Assuntos
Arabidopsis , Divisão Celular Assimétrica , Epiderme Vegetal , Folhas de Planta , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Linhagem da Célula , Polaridade Celular/genética , Citoesqueleto , Mitose/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Epiderme Vegetal/citologia , Epiderme Vegetal/genética
13.
New Phytol ; 239(5): 1903-1918, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349864

RESUMO

The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding ß-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Proteínas de Saccharomyces cerevisiae , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ceras/metabolismo , Mutação/genética , Epiderme Vegetal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo
14.
Genes (Basel) ; 14(6)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37372466

RESUMO

BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.


Assuntos
Ácidos Graxos , Cebolas , Cebolas/genética , Ácidos Graxos/metabolismo , Filogenia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Ceras/metabolismo
15.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347863

RESUMO

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Assuntos
Brassinosteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Comunicação Celular , Parede Celular/metabolismo , Lamiales/citologia , Lamiales/genética , Lamiales/metabolismo , Epiderme Vegetal/metabolismo
16.
Int J Biol Macromol ; 242(Pt 2): 124743, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150377

RESUMO

The placenta in fruits of most plants either desiccate and shrink as the fruits mature or develop further to form the fleshy tissues. In poplars, placental epidermal cells protrude collectively to produce catkin fibers. In this study, three carpel limited MIXTA genes, PdeMIXTA02, PdeMIXTA03, PdeMIXTA04, were find to specifically expressed in carpel immediately after pollination. Heterologous expression of the three genes in Arabidopsis demonstrated that PdeMIXTA04 significantly promoted trichomes density and could restore trichomes in the trichomeless mutant. By contrast, such functions were not observed with PdeMIXTA02, PdeMIXTA03. In situ hybridization revealed that PdeMIXTA04 was explicitly expressed in poplar placental epidermal cells. We also confirmed trichome-specific expression of the PdeMIXTA04 promoter. Multiple experimental proofs have confirmed the interaction between PdeMIXTA04, PdeMYC and PdeWD40, indicating PdeMIXTA04 functioned through the MYB-bHLH-WD40 ternary complex. Our work provided distinctive understanding of the molecular mechanism triggering differentiation of poplar catkins.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Cone de Plantas , Epiderme Vegetal , Proteínas de Plantas , Populus , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Populus/citologia , Populus/genética , Populus/crescimento & desenvolvimento , Arabidopsis , Diferenciação Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Polinização , Cone de Plantas/genética , Cone de Plantas/crescimento & desenvolvimento
17.
Microsc Res Tech ; 86(8): 923-928, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37083080

RESUMO

The foliar epidermal anatomical characteristics of the two endemic Apiaceae species of Korea Bupleurum latissimum Nakai and Dystaenia takesimana (Nakai) Kitag. were investigated. The taxonomically important characteristics of these two species were identified and described to help understand their classical taxonomy. Scanning electron microscopy (SEM) was used to observe the anatomical characteristics of the studied species in detail. The comparative foliar epidermal anatomical characteristics were observed in the present research for the two-endemic species. Some of the most important foliar epidermal anatomical characteristics were observed to distinguish them, including the epidermal cell shape and size, stomata type, and trichomes shape and size. SEM provided sufficient evidence to distinguish the study species. The foliar epidermal anatomical characteristics provide sufficient information to differentiate these two species from their closely related taxa. RESEARCH HIGHLIGHTS: Apiaceae species endemic to Ulleungdo and Dokdo Islands exhibit unique foliar epidermal anatomical characteristics that can be used for taxonomic identification and classification. This study contributes to the documentation of the plant diversity of Ulleungdo and Dokdo Islands, and highlights the need for further research on the biogeography and conservation of these endemic plant species.


Assuntos
Apiaceae , Epiderme Vegetal , Ilhas , Microscopia Eletrônica de Varredura , República da Coreia , Folhas de Planta
18.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047735

RESUMO

Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four barley genes homologous to the Arabidopsis thaliana AtWIN1 gene were mutated using RNA-guided Cas9 endonuclease. Mutations in one of them, the HvWIN1 gene, caused a recessive glossy sheath phenotype associated with ß-diketone deficiency. A complementation test for win1 knockout (KO) and cer-x mutants showed that Cer-X and WIN1 are allelic variants of the same genomic locus. A comparison of the transcriptome from leaf sheaths of win1 KO and wild-type plants revealed a specific and strong downregulation of a large gene cluster residing at the previously known Cer-cqu locus. Our findings allowed us to postulate that the WIN1 transcription factor in barley is a master mediator of the ß-diketone biosynthesis pathway acting through developmental stage- and organ-specific transactivation of the Cer-cqu gene cluster.


Assuntos
Arabidopsis , Hordeum , Hordeum/genética , Hordeum/metabolismo , Ceras/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/genética
19.
Dev Cell ; 58(6): 506-521.e5, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36931268

RESUMO

Plant leaves feature epidermal stomata that are organized in stereotyped patterns. How does the pattern originate? We provide transcriptomic, imaging, and genetic evidence that Arabidopsis embryos engage known stomatal fate and patterning factors to create regularly spaced stomatal precursor cells. Analysis of embryos from 36 plant species indicates that this trait is widespread among angiosperms. Embryonic stomatal patterning in Arabidopsis is established in three stages: first, broad SPEECHLESS (SPCH) expression; second, coalescence of SPCH and its targets into discrete domains; and third, one round of asymmetric division to create stomatal precursors. Lineage progression is then halted until after germination. We show that the embryonic stomatal pattern enables fast stomatal differentiation and photosynthetic activity upon germination, but it also guides the formation of additional stomata as the leaf expands. In addition, key stomatal regulators are prevented from driving the fate transitions they can induce after germination, identifying stage-specific layers of regulation that control lineage progression during embryogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/metabolismo , Diferenciação Celular , Epiderme Vegetal , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
20.
Curr Biol ; 33(6): R210-R214, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36977378

RESUMO

The plant cuticle is one of the key innovations that allowed plants to colonize terrestrial ecosystems. By limiting molecular diffusion, the cuticle provides an interface that ensures controlled interactions between plant surfaces and their environments. It confers diverse and sometimes astonishing properties upon plant surfaces at both the molecular level (from water and nutrient exchange capacities to almost complete impermeability), to the macroscopic level (from water repellence to iridescence). It takes the form of a continuous modification of the outer cell wall of the plant epidermis from early in plant development (surrounding the epidermis of the developing plant embryo) and is actively maintained and modified throughout the growth and development of most plant aerial organs - including non-woody stems, flowers, leaves, and even the root cap of emerging primary and lateral roots. The cuticle was first identified as a distinct structure in the early 19th century, and has since been the focus of intense research that, while revealing the fundamental role of the cuticle in the life of terrestrial plants, has also highlighted many unresolved mysteries regarding cuticle biogenesis and structure.


Assuntos
Ecossistema , Plantas , Folhas de Planta , Flores , Água , Epiderme Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...